This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/tree/euler-tour-on-nodes.hpp"
#pragma once
#include "../../data-structure/lazy-segment-tree.hpp"
#include "../../data-structure/sparse-table.hpp"
#include "../../template/template.hpp"
struct EulerTour {
using Graph = vector<vector<int>>;
using Node = pair<long long, int>;
const function<Node(Node, Node)> fm = [](Node a, Node b) { return Node(a.first + b.first, a.second + b.second); };
const function<void(Node &, long long)> fa = [](Node &a, long long d) { a.first += d * a.second; };
const function<void(long long &, long long)> fl = [](long long &d, long long e) { d += e; };
// main results
Graph tree;
vector<int> depth;
vector<int> node; // the node-number of i-th element of Euler-tour
vector<int> vf, ve; // the index of Euler-tour of node v
vector<int> eid; // the index of edge e (i*2 + (0: dir to leaf, 1: dir to root))
// sub results
SparseTable<pair<int, int>> st; // depth (to find LCA)
// segtree
Lazy_SegTree<Node, long long> seg;
// initialization
EulerTour(const Graph &tree_) { init(tree_); }
void init(const Graph &tree_) {
tree = tree_;
int V = (int)tree.size();
depth.resize(V * 2 - 1);
node.resize(V * 2 - 1);
vf.resize(V);
ve.resize(V);
eid.resize((V - 1) * 2);
seg.init((V - 1) * 2, fm, fa, fl, Node(0, 0), 0);
int k = 0;
dfs(0, -1, 0, k);
vector<pair<int, int>> tmp(int(depth.size()));
for (int i = 0; i < int(depth.size()); i++) {
tmp[i] = {depth[i], i};
}
st.init(tmp);
seg.build();
}
void dfs(int v, int par, int dep, int &ord) {
node[ord] = v;
depth[ord] = dep;
vf[v] = ve[v] = ord;
++ord;
for (auto e : tree[v]) {
if (e == par) continue;
seg.set(ord - 1, Node(0, 1));
dfs(e, v, dep + 1, ord);
node[ord] = v;
depth[ord] = dep;
ve[v] = ord;
seg.set(ord - 1, Node(0, -1));
++ord;
}
}
inline int LCA(int u, int v) {
int a = vf[u], b = vf[v];
if (a > b) swap(a, b);
return node[st.get(a, b + 1).second];
}
inline void update(int v, long long x) {
seg.update(vf[v], ve[v], x);
}
inline long long get(int v) {
return seg.get(0, vf[v]).first;
}
inline long long get(int u, int v) {
int lca = LCA(u, v);
return get(u) + get(v) - get(lca) * 2;
}
};
#line 2 "template/template.hpp"
#include <bits/stdc++.h>
#line 3 "template/macro.hpp"
#define overload3(_1, _2, _3, name, ...) name
#define all1(v) std::begin(v), std::end(v)
#define all2(v, a) std::begin(v), std::begin(v) + a
#define all3(v, a, b) std::begin(v) + a, std::begin(v) + b
#define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__)
#define rall1(v) std::rbegin(v), std::rend(v)
#define rall2(v, a) std::rbegin(v), std::rbegin(v) + a
#define rall3(v, a, b) std::rbegin(v) + a, std::rbegin(v) + b
#define rall(...) overload3(__VA_ARGS__, rall3, rall2, rall1)(__VA_ARGS__)
#define elif else if
#define updiv(N, X) (((N) + (X) - 1) / (X))
#define sigma(a, b) (((a) + (b)) * ((b) - (a) + 1) / 2)
#define INT(...) \
int __VA_ARGS__; \
scan(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
scan(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
scan(__VA_ARGS__)
#define CHR(...) \
char __VA_ARGS__; \
scan(__VA_ARGS__)
#define DOU(...) \
double __VA_ARGS__; \
scan(__VA_ARGS__)
#define LD(...) \
ld __VA_ARGS__; \
scan(__VA_ARGS__)
#define pb push_back
#define eb emplace_back
#line 3 "template/alias.hpp"
using ll = long long;
using ld = long double;
using pii = std::pair<int, int>;
using pll = std::pair<ll, ll>;
constexpr int inf = 1 << 30;
constexpr ll INF = 1LL << 60;
constexpr int dx[8] = {1, 0, -1, 0, 1, -1, 1, -1};
constexpr int dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};
constexpr int mod = 998244353;
constexpr int MOD = 1e9 + 7;
#line 3 "template/func.hpp"
template <typename T>
inline bool chmax(T& a, T b) { return ((a < b) ? (a = b, true) : (false)); }
template <typename T>
inline bool chmin(T& a, T b) { return ((a > b) ? (a = b, true) : (false)); }
template <typename T, typename U>
std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
std::istream &operator>>(std::istream &is, std::pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {
for (auto it = std::begin(v); it != std::end(v);) {
os << *it << ((++it) != std::end(v) ? " " : "");
}
return os;
}
template <typename T>
std::istream &operator>>(std::istream &is, std::vector<T> &v) {
for (T &in : v) {
is >> in;
}
return is;
}
inline void scan() {}
template <class Head, class... Tail>
inline void scan(Head &head, Tail &...tail) {
std::cin >> head;
scan(tail...);
}
template <class T>
inline void print(const T &t) { std::cout << t << '\n'; }
template <class Head, class... Tail>
inline void print(const Head &head, const Tail &...tail) {
std::cout << head << ' ';
print(tail...);
}
template <class... T>
inline void fin(const T &...a) {
print(a...);
exit(0);
}
#line 3 "template/util.hpp"
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
std::cout.tie(0);
std::cout << std::fixed << std::setprecision(12);
std::cerr << std::fixed << std::setprecision(12);
}
} IOSetup;
#line 3 "template/debug.hpp"
#ifdef LOCAL
#include <dump.hpp>
#else
#define debug(...)
#endif
#line 8 "template/template.hpp"
using namespace std;
#line 3 "data-structure/lazy-segment-tree.hpp"
template <class Monoid, class Action>
struct Lazy_SegTree {
using FuncMonoid = function<Monoid(Monoid, Monoid)>;
using FuncAction = function<void(Monoid&, Action)>;
using FuncComposition = function<void(Action&, Action)>;
FuncMonoid FM;
FuncAction FA;
FuncComposition FC;
Monoid IDENTITY_MONOID;
Action IDENTITY_LAZY;
int N, SIZE, HEIGHT;
vector<Monoid> dat;
vector<Action> lazy;
Lazy_SegTree() {}
Lazy_SegTree(int n, const FuncMonoid fm, const FuncAction fa,
const FuncComposition fc,
const Monoid& identity_monoid, const Action& identity_lazy)
: FM(fm), FA(fa), FC(fc), IDENTITY_MONOID(identity_monoid), IDENTITY_LAZY(identity_lazy), N(n) {
SIZE = 1, HEIGHT = 0;
while (SIZE < n) SIZE <<= 1, ++HEIGHT;
dat.assign(SIZE * 2, IDENTITY_MONOID);
lazy.assign(SIZE * 2, IDENTITY_LAZY);
}
void init(int n, const FuncMonoid fm, const FuncAction fa,
const FuncComposition fc,
const Monoid& identity_monoid, const Action& identity_lazy) {
FM = fm, FA = fa, FC = fc;
IDENTITY_MONOID = identity_monoid, IDENTITY_LAZY = identity_lazy;
SIZE = 1, HEIGHT = 0;
while (SIZE < n) SIZE <<= 1, ++HEIGHT;
dat.assign(SIZE * 2, IDENTITY_MONOID);
lazy.assign(SIZE * 2, IDENTITY_LAZY);
}
void set(int a, const Monoid& v) { dat[a + SIZE] = v; }
void build() {
for (int k = SIZE - 1; k > 0; --k)
dat[k] = FM(dat[k * 2], dat[k * 2 + 1]);
}
inline void evaluate(int k) {
if (lazy[k] == IDENTITY_LAZY) return;
if (k < SIZE) FC(lazy[k * 2], lazy[k]), FC(lazy[k * 2 + 1], lazy[k]);
FA(dat[k], lazy[k]);
lazy[k] = IDENTITY_LAZY;
}
inline void update(int a, int b, const Action& v, int k, int l, int r) {
evaluate(k);
if (a <= l && r <= b)
FC(lazy[k], v), evaluate(k);
else if (a < r && l < b) {
update(a, b, v, k * 2, l, (l + r) >> 1);
update(a, b, v, k * 2 + 1, (l + r) >> 1, r);
dat[k] = FM(dat[k * 2], dat[k * 2 + 1]);
}
}
inline void update(int a, int b, const Action& v) {
update(a, b, v, 1, 0, SIZE);
}
inline Monoid get(int a, int b, int k, int l, int r) {
evaluate(k);
if (a <= l && r <= b)
return dat[k];
else if (a < r && l < b)
return FM(get(a, b, k * 2, l, (l + r) >> 1),
get(a, b, k * 2 + 1, (l + r) >> 1, r));
else
return IDENTITY_MONOID;
}
inline Monoid get(int a, int b) {
return get(a, b, 1, 0, SIZE);
}
inline Monoid operator[](int a) {
return get(a, a + 1);
}
friend ostream& operator<<(ostream& os, Lazy_SegTree seg) {
os << "[ ";
for (int i = 0; i < seg.N; i++) {
os << seg.get(i, i + 1) << " ";
}
os << ']';
return os;
}
};
#line 3 "data-structure/sparse-table.hpp"
template <class T>
struct SparseTable {
vector<vector<T>> dat;
vector<int> height;
using Func = function<T(T, T)>;
Func F;
SparseTable() {}
explicit SparseTable(
const vector<T> &vec,
const Func f = [](T a, T b) { return min(a, b); }) {
init(vec, f);
}
void init(
const vector<T> &vec,
const Func f = [](T a, T b) { return min(a, b); }) {
F = f;
int n = (int)vec.size(), h = 32 - __builtin_clz(n);
dat.assign(h, vector<T>(1 << h));
height.assign(n + 1, 0);
for (int i = 2; i <= n; i++) height[i] = height[i >> 1] + 1;
for (int i = 0; i < n; ++i) dat[0][i] = vec[i];
for (int i = 1; i < h; ++i)
for (int j = 0; j < n; ++j)
dat[i][j] = F(dat[i - 1][j],
dat[i - 1][min(j + (1 << (i - 1)), n - 1)]);
}
T get(int a, int b) {
return F(dat[height[b - a]][a],
dat[height[b - a]][b - (1 << height[b - a])]);
}
};
#line 5 "graph/tree/euler-tour-on-nodes.hpp"
struct EulerTour {
using Graph = vector<vector<int>>;
using Node = pair<long long, int>;
const function<Node(Node, Node)> fm = [](Node a, Node b) { return Node(a.first + b.first, a.second + b.second); };
const function<void(Node &, long long)> fa = [](Node &a, long long d) { a.first += d * a.second; };
const function<void(long long &, long long)> fl = [](long long &d, long long e) { d += e; };
// main results
Graph tree;
vector<int> depth;
vector<int> node; // the node-number of i-th element of Euler-tour
vector<int> vf, ve; // the index of Euler-tour of node v
vector<int> eid; // the index of edge e (i*2 + (0: dir to leaf, 1: dir to root))
// sub results
SparseTable<pair<int, int>> st; // depth (to find LCA)
// segtree
Lazy_SegTree<Node, long long> seg;
// initialization
EulerTour(const Graph &tree_) { init(tree_); }
void init(const Graph &tree_) {
tree = tree_;
int V = (int)tree.size();
depth.resize(V * 2 - 1);
node.resize(V * 2 - 1);
vf.resize(V);
ve.resize(V);
eid.resize((V - 1) * 2);
seg.init((V - 1) * 2, fm, fa, fl, Node(0, 0), 0);
int k = 0;
dfs(0, -1, 0, k);
vector<pair<int, int>> tmp(int(depth.size()));
for (int i = 0; i < int(depth.size()); i++) {
tmp[i] = {depth[i], i};
}
st.init(tmp);
seg.build();
}
void dfs(int v, int par, int dep, int &ord) {
node[ord] = v;
depth[ord] = dep;
vf[v] = ve[v] = ord;
++ord;
for (auto e : tree[v]) {
if (e == par) continue;
seg.set(ord - 1, Node(0, 1));
dfs(e, v, dep + 1, ord);
node[ord] = v;
depth[ord] = dep;
ve[v] = ord;
seg.set(ord - 1, Node(0, -1));
++ord;
}
}
inline int LCA(int u, int v) {
int a = vf[u], b = vf[v];
if (a > b) swap(a, b);
return node[st.get(a, b + 1).second];
}
inline void update(int v, long long x) {
seg.update(vf[v], ve[v], x);
}
inline long long get(int v) {
return seg.get(0, vf[v]).first;
}
inline long long get(int u, int v) {
int lca = LCA(u, v);
return get(u) + get(v) - get(lca) * 2;
}
};